728x90
반응형

  세계적인 자동차 브랜드인 도요타 자동차이지만 전기자동차 분야에서 도요타는 앞서고 있다고 말할 수는 없습니다.

전세계적으로 미국과 중국이 미래 전기자동차 시장을 크게 점유하고 있으며 한국과 유럽의 기업들이 우수한 품질과 기술력으로 바짝 추격하고 있는 모습인데요.

  일본 자동차 시장의 경우 해외보다는 일본 내수 시장에 조금 더 맞춰진 전략으로 타차종보다는 경차에 집중을, 기술력에서는 하이브리드에서 상당기간 기술이 머물러있었기 때문에 전기차 분야에 있어서는 오히려 우리나라보다 늦게 진출한 느낌이 있습니다. 하지만 일본은 전기차, 반도체, 배터리분야에 있어서 상당한 특허기술력이 축적되어 있기 때문에 후발주자라 하더라도 그 추격속도가 상상을 초월할 정도로 빠릅니다. 

   7월 들어 도요타 자동차는 'BEV의 경쟁력'이라는 주제로 설명회를 실시했는데 그동안 지적받아왔던 후발주자 논란에 대한 평판을 뒤집기 위해 앞으로의 개발 스케쥴과 연구성과, 경영 전략 등을 설명하여 세계 자동차 업계에서의 경쟁력을 보여주고자 하였습니다.

 

  내용을 전반적으로 살펴보면 도요타가 취하는 이번 전략은 한분야의 집중이 아닌 전방위에 걸쳐 다양한 포석을 두는 것으로 2026년 부터 발매하게 될 예정의 BEV에 탑재예정인 신형 배터리 4종에 대한 개발에 대한 언급을 하였습니다.

 

  전기자동차의 핵심이라 할 수 있는 배터리 분야에서 4종이나 되는 배터리에 막대한 연구비용과 기술력을 투자할수 있는 원동력은 그동안 축적해왔던 기술 노하우와 더불어 이전세대의 하이브리드 자동차에서 얻은 막대한 수익이 있었기에 가능할수 있었습니다. 또한 앞으로 어떠한 배터리가 주류를 이루고 각분야에서 다양하게 활용 될 것인지 다양한 견해들이 있기 때문에 그 모든곳에 투자하는 전략을 취한것으로 볼 수 있습니다.  

  도요타 자동차의 배터리 전략을 살펴보면 다음과 같습니다.

1. 차세대 전지(퍼포먼스 사양)

2026년 도입예정인 차세대 BEV에서는 항속거리 1000km를 실현시키기 위해 이를 뒷받침할수 있는 전지를 개발중입니다. 에너지 밀도를 높일뿐아니라 경량화를 하여 효율을 극대화 시켜 항속거리를 늘림과 동시에 생산 단가를 낮추고 20분 충전시 80%이상 충전을 가능하게 하는것을 목표로 개발중입니다.

 

2. 차세대 전지(보급형 사양)

전기자동차에 있어 배터리는 차량의 가격에 큰영향을 미치는 요소이기때문에 전지에서도 다양한 선택을 제공하여 전기자동차의 보급을 확대하기 위해 보급형 사양의 배터리 개발도 진행중입니다. 기존 하이브리트 차량이나 아쿠아, 크라운에 사용되었던 바이폴라 구조의 전지를 도입하고 가격이 저렴한 인산철 리튬(LFP)을 채용하였습니다. 기존대비 20%의 항속거리 향상, 40%생산비용 절감, 30분 이하의 급속충전을 목표로 하고 있습니다. 

3. 바이폴라형 리튬 이온전지(하이퍼포먼스 사양)

위의 차세대 전지 퍼포먼스 사양보다도 항속거리가 10%더 향상되고 10%비용을 절감하며 급속충전은 20분 이하 실현을 목표로 개발중입니다.

 

4. 전고체 전지

전고체 전지는 미래 배터리 산업의 핵심으로 그동안 전지의 내구성을 극복하는 기술적인 과제에서 어느정도 성과를 이루었기 때문에 박차를 가하고 양산을 위한 공법을 개발중이라고 합니다. 2028년 까지 양산 및 실용화를 계획하고 있으며 항속거리 50%향상, 급속충전 10분 이하를 목표로 개발중입니다.

728x90
반응형
728x90
반응형

 

  전기 자동차 구매를 고려 중인 사람이라면 가장 신경 쓰이는 부분이 바로 충전시간일 것입니다. 예전부터 지적되어 왔던 주행거리문제는 일반 내연기관 차량들과 거의 비슷한 수준, 또는 그 이상의 성능을 보여줄 정도로 많이 발전해 왔습니다만 전기 충전에 걸리는 시간은 조금 더 가야 할 길이 남아있는 듯합니다.

 

  사용 중인 스마트폰의 충전시간에 대해 관심이 있는 분이라면 최신 기술에 대해 잘 아실 텐데요, 흔히 선만 꽂아서 충전램프에 불이 들어오고 스마트폰에 충전 중이라고 표시만 된다면 그냥 내버려 두시는 분들도 있으실 테지만 요즘 젊은 사람들, 특히나 MZ세대 및 스마트폰을 일상생활에서 밀접하게, 지속적으로 사용하는 분들이라면 완전 충전에 걸리는 시간에 민감할 수도 있습니다. 이전에는 보조 배터리로 이러한 부분을 소소하게라도 커버하기도 했지만, 기술이 발전함에 따라 보조 배터리가 아닌 본체의 배터리 자체를 빨리 정말충전시켜 버리는 기술들이 나오고 있습니다. 일반 충전 외에 대부분의 스마트 폰이 지원하는 고속 충전모드는 고속충전을 지원하는 충전기 본체와 충전 케이블을 교환함으로써 충전시간의 향상을 체감할 수 있고, 최신스마트폰에서 지원하는 초고속충전의 경우도 동봉되어 있거나 별도로 초고속 충전을 지원하는 충전기 및 충전 케이블을 구매하여 사용하면 이전에는 느끼지 못했던 엄청나게 빠른 충전 속도를 경험할 수 있습니다. 만약 기존보다 빠른 새로운 충전 속도를 체감해 본 적이 있다면 그 이전세대의 충전기들은 답답하고 느려서 더 이상 사용할 수 없을지도 모릅니다.

 

  현재 전기 자동차에서도 급속 충전과 일반 충전이 있지만, 전기차 이전에 내연기관 자동차를 탔던 사람들이라면 주유소에서 일반적인 휘발유나 경유, LPG 등을 넣었을 때 보다 훨씬 오래 걸리는 전기차 충전 시간이 부담스럽게 느껴질 수 있기 때문에 이는 내연기관차에서 전기 차로 넘어가는데 커다란 진입장벽이 되고 있습니다.

 

  전기자동차에서 급속 충전은 30~40분 정도로 주로 충전 스테이션이나 대형 쇼핑몰 등 공공장소에서 운영되고 있으며, 일반충전의 경우 가정에서 개별적으로 이용하는 경우가 대부분입니다. 충전 요금은 급속 충전이 이를 운영하는 곳이나 급속충전 모드의 영향을 받기 때문에 상대적으로 비싸며, 가정에서 사용하는 일반 충전의 경우 충전 시간에 저녁 늦게부터 아침까지 충전하는 경우가 대부분이라 시간이 길지만 분당 충전요금이 저렴하고 심야전기요금의 영향도 받기 때문에 이용 요금 면에서는 유리한 면을 가질 수 있습니다.

 

  현재 몇 분 정도로 충전이 완료되는 급속 충전기도 개발되고 있긴 하지만, 일반적으로 축전지의 용량 상한 근처는 내부 저항이 높아져 온도 상승과 충전 효율이 약화되는 경향이 있고 이로 인해 충전 시간도 늘어나기 때문에 완전 충전이 아닌 80% 충전으로 끝내는 방식이 채택되어 운영되고 있습니다.

 

  급속 충전의 경우 배터리 내부의 화학적 부담이 심하고 배터리의 적절한 온도 관리가 되어있지 않은 경우 온도가 상승하여 배터리의 수명이 짧아질 수 있기 때문에 급속충전보다 일반충전을 주로 사용한 배터리의 수명이 더 긴 경우가 많다고 할 수 있습니다.

 

  전기 자동차 충전에 사용되는 충전규격의 경우 일본에서 개발된 'CHAdeMO' 라는 90kw까지의 직류(DC)를 이용한 급속충전방식이 세계에 보급화되어 사용되었지만 최근에 들어서는 유럽이나 미국 중국 등 전기차 생산이 활발해지고 경쟁이 치열해지면서 독자적인 고규 격의 급속 충전 설비를 개발하고 이에 대응한 표준 규격들이 새롭게 생겨나고 있기 때문에 CHAdeMO의 입지는 서서히 줄어들고 있는 추세입니다. 미국의 테슬라의 경우 250kw에 대응하는 슈퍼 충전기를 내세우고 있습니다. 현재 일본의 경우 대부분이 CHAdeMO이 사용되고 있으며, 개량버전을 2018년 6월 CHAdeMO 2.0에서 400kw까지 끌어올렸고 이를 8월에 다시 CHAdeMo 3.0에서 350~900kw까지 상향시켰습니다. 하지만 3.0의 경우 커넥터 형상이 이전과 다르기 때문에 1.0, 2.0과 호환되지 못하고 실제로 일본에서 보급되고 있는 급속 충전기는 대부분 20~50k 급입니다.

 

  스마트 폰의 무선충전 기능과 유사하게 전기자동차에도 케이블이 필요없는 비접촉 충전 방식이 개발되고 있지만, 아직까지 보급에는 이르지 못하고 있습니다.

 

  고속충전과 일반충전 외에도 다쓴배터리와 충전이 완료된 배터리를 교환하는 방식도 있습니다. 이는 긴 충전시간을 단시간에 배터리만 분리 및 교체하여 시간을 줄이는 취지에서 도입된 방식입니다. 이 방식은 전기를 충전하는 것이 아닌 배터리 교환 서비스 자체가 판매의 대상이기 때문에 공급자의 입장에서는 매출 이익을 올리는데 유리하고, 전기자동차 운전자의 입장에서는 배터리의 상태유지의 수고를 덜어낼 수 있는 장점이 있습니다. 

 

  미국의 테슬라의 경우 90초만에 테슬라 모델 S의 배터리를 교환하는 시스템을 개발 중인데 이는 일반 내연기관 자동차 급유에 걸리는 3분, 수소연료전치 충전에 걸리는 5분 정도의 시간보다도 훨씬 빠르다고 할 수 있습니다. 또한 르노, 닛산, 미쓰비시 얼라이언스는 충전 스탠드의 정비 및 운영을 하고 있는 미국의 베타 플레이스사와 함께 전지 교환소의 보급에 열을 내고 정부나 지자체에 의한 보조금이나 세금 우대를 도입한 전기 자동차의 발매를 계획하고 있습니다. 베타 플레이스에서는 전력의 보급문제를 전기자동차에 탑재되어 있는 배터리에 충전하는 방식이 아닌 카트리지식 전지를 교환하는 방법을 내세우고 이를 통해 충전 시간의 문제를 해결할 수 있다고 합니다. 또한 과거의 휴대전화의 비즈니스 모델에 입각하여 전기자동차의 본체는 사용자에게 거의 무료로 공급하고 전지의 이용에 따른 요금 수입에 의한 경영방침 또한 준비 중이라고 합니다.

728x90
반응형
728x90
반응형

 

  지난 글에서 전기차의 다양한 장점들에 대해 살펴보았습니다만 몇 가지 더 추가적으로 살펴보려 합니다. 기존 내연기관자동차와 비교했을 때 너무나 새로운 점들이 많고 많은 부분이 달라졌기 때문에 지난 글에 다 언급하지 못하였네요. 몇 가지 장점들을 추가로 언급한 뒤 단점들도 정리해 보도록 하겠습니다.

 

 

  15. 엔진 크기가 소형이라 공간의 활용이 좋아진것 뿐만아니라 구동계 자체의 레이아웃도 기존 내연기관 자동차들에 비해 제약이 많이 감소하였습니다. 예를 들면 차량 후방에 모터를 설치하더라도 승차할 수 있는 인원수와 여유공간, 적재공간 등을 확보할 수 있기 때문에  전륜구동, 구륜구동 등 모터의 설치 위치도 자유롭게 할 수 있고 또한 모터의 수 자체를 늘려 전륜과 후륜 간의 별도 모터 사용으로 차량 중간을 가로지르는 샤프트를 사용하지 않아도 됩니다.

 

  16. 휘발유, 경유 등과 같은 가연성 폭발성이 강한 화석연료가 필요 없기 때문에 화재나 폭발 위험이 이전보다는 많이 줄어들었습니다.

 

  17. 전기 자동차는 동력 구동계의 설계 자체가 심플하기 때문에 응답속도가 빠르고 제어하기 쉽습니다.  

 

  18. 내연 기관 자동차는 운행 중 고도가 높아지게 되면 대기압이나 산소 농도 저하에 따라 차량의 엔진 내부 기압 등이 변화되고 이에 따라 차량 출력이 저하되기도 하지만, 전기자동차의 경우 이러한 고도 변동에 의한 영향을 받지 않으며 일정한 출력을 유지할 수 있습니다.

 

  19. 전기 자동차에 이용되는 전기 모터는 차량 출발시 부터 최대의 토크값을 얻을 수 있으며, 마찰 손실이 발생하는 트랜스미션 등을 사용하지 않고 직접 바퀴에 동력을 전달하는 것이 가능하기 때문에 가속 능력이 매우 우수합니다. 이와 관련하여 인휠 모터, 휠 모터, 허브 모터라고 불리는 기술이 개발되기도 했는데 이는 전기 자동차 등에 사용되는 바퀴의 허브 내부에 모터를 장착하여 동력 전달 시 발생할 수 있는 손실을 최소화할 수 있습니다. 이는 차세대 전기 자동차의 핵심적인 기술이 될 것으로 예상해 볼 수 있습니다. 인휠 모터 내에 감속기어를 사용하는 기술도 존재하고, 디렉트 드라이브 인휠 모터라고 불리는 변속기 자체를 아예 설치하지 않는 인휠 모터 기술도 개발되고 있습니다.

 

  20. 배터리의 기술 발달로 인해 완충시 주행거리가 600km가 넘는 전기 차들도 이미 많이 존재하며 내연기관 차량들과 비교해도 밀리지 않는 수준까지 발달하였습니다. 또한 배터리의 기술은 점점 더 발달할 예정이기 때문에 주행거리는 갈수록 더욱 늘어날 전망이며 충전 시간의 단축 또한 점점 더 빨라지는 초고속 충전기술이 나올 것으로 전망됩니다.

 

  물론 이 밖에도 다양한 전기자동차의 장점들이 존재하고 전기자동차의 제조사들 마다 특별한 기능과 장점을 앞세운 차량들을 출시하고 있습니다만, 장점의 언급을 이정도 선에서 줄이고 이제 전기 자동차의 단점, 개선해 나가야 할 부분들에 대해 언급해 보고자 합니다.

 

  1. 휘발유, 경유, LPG 등 화석연료차의 급유, 가스충전 시간에 비해 전기차의 충전 시간이 오래 걸립니다. 따라서 기존 주유소에 비해 전기차 충전소는 차량 충전의 회전율이 매우 나쁩니다. 최근 전기차 충전 인프라가 많이 늘어났다고는 하지만 여전히 그 수가 많이 부족한 실정이고 충전 시간 또한 오래 걸리기 때문에 명절 연휴의 경우 전국 고속도로 휴게소에서 전기차 충전소는 차량대기열이 엄청나게 길었으며 다음 휴게소에서 충전소의 이용가능상황 또한 불투명한 경우가 많아 쉽게 포기하거나 움직일 수 있는 상황이 아닌 경우가 많았습니다. 충전소 관련 인프라의 확대와 더불어 빨라졌다고는 하나 초고속 충전 기술의 개발은 앞으로도 시급한 과제로 남아있습니다.

 

  2. 전기자동차에 사용되는 2차 전지는 공간 당 차지하는 크기나 중량당 에너지가 화석연료에 비해 작기 때문에 동일한 공간 당 차지하는 크기,  동일한 중량일 경우 주행거리가 내연기관 자동차에 비해 짧은 단점이 있습니다. 예전 플로피 디스크에서 CD, DVD, USB 등으로 데이터를 압축하거나 레이어를 겹쳐 쓰는 등 여러 방식으로 발전해온 저장매체의 발전처럼 전기자동차의 배터리도 다양한 전기 저장기술 등을 개발하여야 할 필요가 있습니다.

 

  3. 외부의 온도가 지나치게 저온이거나 고온이 될 경우, 전기자동차의 배터리에 적절한 온도관리 시스템이 갖추어지지 않았을때 충전 속도가 저하되거나, 배터리가 열화 되어 온도가 급상승하는 등의 문제가 발생할 수 있고, 배터리의 전지 소모도 빨라질 수 있습니다. 이는 지난겨울 미국의 테슬라 자동차가 가능한 주행거리의 km수가 기온이 낮아짐에 따라 크게 줄어들어 회사의 주식가격이나, 이미지에 큰 타격을 입는 등 문제가 되기도 하였습니다.

 

  4. 자동차를 주기적으로 주행하지않고 방치하게 되면 자연방전에 의한 배터리 잔량이 감소하기 때문에 가까운 곳에 충전시설이 갖추어져 있지 않은 경우 주의해야 합니다. 만약 완전히 자연방전이 돼버린다면 보험서비스를 부른다거나 휴대용 비상 배터리를 사전에 구비해 놓는 등의 대처가 필요합니다.

 

  5. 전기 자동차는 동력원과 구동계에서 발생되는 소음이 매우 적고 폭발에 의해 동력을 얻는 방식이 아니기 때문에 내연기관 자동차보다 훨씬 조용합니다. 무소음은 전기동차의 큰 장점이기도 하지만 보행자의 입장에서는 근처에 접근하는 자동차의 존재를 의식하기 힘들기 때문에 사고의 위험에 노출되는 상황이 발생하기도 합니다. 청각 기능이 약한 고령자나 청각 장애인, 시각 장애인, 이어폰이나 헤드셋을 착용한 보행자 등이 특히 위험에 노출되기 쉽습니다. 또한 차량의 조용함을 악용한 소매치기 범죄의 사례도 외국에서 발생한 적이 있어서 더욱 주의해야 하며 이로 인해 차량이 보행자에게 접근 시 소리로 이를 알리는 '차량 접근 통보 장치'의 설치가 대책으로 의무화되기도 하였습니다.

728x90
반응형

+ Recent posts